Теория вероятностей: объяснение парадокса Монти Холла

Теория вероятностей, названная по имени своего создателя Монти Холла, впервые была продемонстрирована им в телевизионном шоу Let’s make a deal в 1975 году. Многие люди проигрывали, опираясь на интуицию, а не на логику.

Некоторые слышали о таком математическом эффекте, как парадокс Монти Холла. По сути, это не парадокс вовсе, а пример самоотверженного упорства людей, основанный на интуиции вместо логики. Того же мнения придерживаются учёные. Но исследования и тесты противоречат научной базе. Что за математическое явление, которое 45 лет не даёт покоя эрудированному населению планеты и не может воспринять неподготовленный человеческий разум?

История происхождения

Парадокс Монти Холла привлёк особое внимание людей в 1975 году. Хотя предмет бурных обсуждений эрудитов зародился ещё 1963-м, когда на экраны американских телевизоров вышло игровое телешоу «Давайте заключим сделку». В оригинале — Let’s make a deal. Автором и ведущим передачи стал Монти Холл. Он давал участникам различные задачки и дилеммы, которые казались простейшими. Поэтапно ставки увеличивались, а игроки приближались к «супер-игре». Но без логического мышления люди проигрывали, поддаваясь интуиции.

Рис.1 Телешоу «Давайте заключим сделку»

Одна из самых популярных загадок, основанная на математической теории, вышла в телешоу в 1975 году. Участники должны были отгадать 1 правильный вариант из 3 предложенных. Это и стало предметом бурных дискуссий, в которых принимали участие учёные математики и теоретики. Самое громкое обсуждение эффекта пришлось на 1990 год, после вышедшей статьи в журнале Parade. В ней журналисты назвали загадку телешоу, как «парадокс Монти Холла». Многим учёным пришлось доказывать, что это давно известный метод из геометрии.

Формулировка проблемы

Ведущий телешоу предлагал одному из членов аудитории заключить сделку. Он прятал нечто ценное за дверью. Если участник отгадает, то сможет оставить ценность у себя либо обменять её на другой предмет. Ценная вещь — это автомобиль и остальные предметы — 2 козы. Все они были скрыты от игрока за тремя дверьми.

Если игрок изначально указывал на портал с автомобилем, ведущий выбирал стратегию «адского Монти». Под воздействием психологических убеждений участник менял свой выбор в пользу проигрышного.

Ведущий предлагал выбрать для открытия любую дверь. Участник выбирал, например, портал № 1. Перед тем как показать содержимое, Монти Холл открывал любую из 2 оставшихся дверей, например, № 3. Он знал содержимое. За порталом находился неценный предмет — коза.

Рис.2. Монти Холл предлагает выбрать призовой портал

Оставалось две закрытые двери, за одной из которых автомобиль. Шансы получить машину увеличивались и составляли 50/50, вместо 33/33/33. Ведущий предлагает участнику изменить свой выбор. Может игрок передумает и захочет открыть дверь № 2? Такая психологическая уловка смущала участников, и они всё больше утверждались на своей позиции.

У человека появляется уверенность, что он правильно сделал свой первый выбор — дверь № 1. Интуиция подсказывает ему не менять позицию, и что его хотят запутать. Но на самом деле шансы не равны. А если отказать от первого портала, с точки зрения математики, вероятность выиграть автомобиль возрастает в разы.

Объяснение парадокса Монти Холла

Выбирая первую дверь, игрок руководствуется случайностью. Возможно, за порталом есть автомобиль, а может, его там нет. Интрига. Все двери остаются закрытыми, пока ведущий не откроет свой портал. Теперь следует исключить интуицию и прибегнуть к логике. Она заключается в следующем — необходимо применить метод замены переменной.

Игроку не стоит полагаться на выбор, а необходимо руководствоваться простыми математическими расчётами. Изначально вероятность событий равна: p1 = 1/3, p2 = 1/3, p3 = 1/3. Монти Холл исключил р3. Тем более он знал, что за дверью нет автомобиля. Появилась новая вероятность t по формуле: t= р2 + р3 = 2/3. Значит, шансы выиграть машину за новой дверью выросли вдвое.

Рис.3. Кадр из игры 2012 года. Выигрыш автомобиля

Многочисленные исследования и тесты показали, что из общего числа игроков, поменявшие двери, выиграли в 60% случаев, против 30% не сменивших позицию. Не имеет значения, с какой двери начинать игру. Главное, это ход ведущего, который откроет 1-й портал. Это изменит вводные и предоставит почву для простых математических расчётов.

Монти Холл прожил 96 лет и скончался в 2017 году. Его «парадокс» упоминается в эпизоде ​​первого сезона телевизионного сериала «Намберс», в фильме «21» (2008 года) и в романе «Любопытный случай с собакой в ​​ночное время».

Выводы

Парадокс Монти Холла действительно работает. Однако он не гарантирует выигрыша, а лишь увеличивает шансы на успех вдвое. Но здесь человек вступает в психологическую борьбу с самим собой, и чаще всего победу одерживает интуиция, а не логика. Просто мы привыкли выбирать из двух вариантов: повезёт/не повезёт.

16 апреля 2019
Поделись страницей с друзьями! 👉